高中数学说课稿

时间:2024-09-09 10:11:06
关于高中数学说课稿锦集6篇

关于高中数学说课稿锦集6篇

作为一位兢兢业业的人民教师,可能需要进行说课稿编写工作,借助说课稿可以更好地组织教学活动。说课稿应该怎么写呢?以下是小编收集整理的高中数学说课稿6篇,欢迎大家借鉴与参考,希望对大家有所帮助。

高中数学说课稿 篇1

一、教材地位与作用

本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理的知识非常重要。

二、学情分析

作为高一学生,同学们已经掌握了基本的三角函数,特别是在一些特殊三角形中,而学生们在解决任意三角形的边与角问题,就比较困难。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

根据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标

教学目标分析:

知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。

能力目标:探索正弦定理的证明过程,用归纳法得出结论。

情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。

三、教法学法分析

教法:采用探究式课堂教学模式,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。

学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,动手尝试相结合,增强学生由特殊到一般的数学思维能力,锲而不舍的求学精神。

四、教学过程

(一)创设情境,布疑激趣

“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

(二)探寻特例,提出猜想

1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

3.让学生总结实验结果,得出猜想:

在三角形中,角与所对的边满足关系

这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

(三)逻辑推理,证明猜想

1.强调将猜想转化为定理,需要严格的理论证明。

2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明。

(四)归纳总结,简单应用

1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

(五)讲解例题,巩固定理

1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。

例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。

例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

(六)课堂练习,提高巩固

1.在△ABC中,已知下列条件,解三角形。

(1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm

2.在△ABC中,已知下列条件,解三角形。

(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°

学生板演,老师巡视,及时发现问题,并解答。

(七)小结反思,提高认识

通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

1.用向量证明了正弦定

理,体现了数形结合的数学思想。

2.它表述了三角形的边与对角的正弦值的关系。

3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

(从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)

(八)任务后延,自主探究

如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。

高中数学说课稿 篇2

一、教材分析

1、教材内容

本节课是苏教版第二章《函数概念和基本初等函数Ⅰ》§2.1.3函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题.

2、教材所处地位、作用

函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质.通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题.通过上述活动,加深对函数本质的认识.函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础.此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是 ……此处隐藏5279个字……生依照概念自行分析,独立完成。

(3)重点,难点,关键

由于本节课是本章内容的第一节课,是学生学习本章的基础。为了本章后面知识的学习,首先必须掌握向量的概念,要抓住向量的本质:大小与方向。所以向量,相等向量的概念,向量的几何表示是这节课的重点。本节课是为高一后半学期学生设计的,尽管此时的学生已经有了一定的学习方法和习惯,但根据以往的教学经验,多数学生对向量的认识还比较单一,仅仅考虑其大小,忽略其方向,这对学生的理解能力要求比较高,所以我认为向量概念也是这节课的难点。而解决这一难点的关键是多用复杂的几何图形中相等的有向线段让学生进行辨认,加深对向量的理解。

二说教学目标的确定

根据本课教材的特点,新大纲对本节课的教学要求,学生身心发展的合理需要,我从三个方面确定了以下教学目标:

(1)基础知识目标:理解向量,零向量,单位向量,共线向量,平行向量,相等向量的概念,会用字母表示向量,能读写已知图中的向量。会根据图形判定向量是否平行,共线,相等。

(2)能力训练目标:培养学生观察、归纳、类比、联想等发现规律的一般方法,培养学生观察问题,分析问题,解决问题的能力。

(3)情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。

三说教学方法的选择

Ⅰ教学方法

本节课我采用了”启发探究式的教学方法,根据本课教材的特点和学生的实际情况在教学中突出以下两点:

(1)由教材的特点确立类比思维为教学的主线。

从教材内容看平面向量无论从形式还是内容都与物理学中的有向线段,矢量的概念类似。因此在教学中运用类比作为思维的主线进行教学。让学生充分体会数学知识与其他学科之间的联系以及发生与发展的过程。

(2)由学生的特点确立自主探索式的学习方法

通常学生对于概念课学起来很枯燥,不感兴趣,因此要考虑学生的情感需要,找一些学生感兴趣的题材来激发学生的学习兴趣,另外,学生都有表现自己的欲望,希望得到老师和其他同学的认可,要多表扬,多肯定来激励他们的学习热情。考虑到我校学生的基础较好,思维较为活跃,对自主探索式的学习方法也有一定的认识,所以在教学中我通过创设问题情境,启发引导学生运用科学的思维方法进行自主探究。将学生的独立思考,自主探究,交流讨论等探索活动贯穿于课堂教学的全过程,突出学生的主体作用。

Ⅱ教学手段

本节课中,除使用常规的教学手段外,我还使用了多媒体投影仪和计算机来辅助教学。多媒体投影为师生的交流和讨论提供了平台;计算机演示的作图过程则有助于渗透数形结合思想,更易于对概念的理解和难点的突破。

四教学过程的设计

Ⅰ知识引入阶段———提出学习课题,明确学习目标

(1)创设情境——引入概念

数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

由生活中具体的向量的实例引入:大海中船只的航线,中国象棋中”马”,”象”的走法等。这些符合高中学生思维活跃,想象力丰富的特点,有利于激发学生的学习兴趣。

(2)观察归纳——形成概念

由实例得出有向线段的概念,有向线段的三个要素:起点,方向,长度。明确知道了有向线段的起点,方向和长度,它的终点就唯一确定。再有目的的进行设计,引导学生概括总结出本课新的知识点:向量的概念及其几何表示。

(3)讨论研究——深化概念

在得到概念后进行归纳,深化,之后向学生提出以下三个问题:

①向量的要素是什么?

②向量之间能否比较大小?

③向量与数量的区别是什么?

同时指出这就是本节课我们要研究和学习的主题。

Ⅱ知识探索阶段———探索平面向量的平行向量。相等向量等概念

(1)总结反思——提高认识

方向相同或相反的非零向量叫平行向量,也即共线向量,并且规定0与任一向量平行.长度相等且方向相同的向量叫相等向量,规定零向量与零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要条件。

(2)即时训练—巩固新知

为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。

[练习1]判断下列命题是否正确,若不正确,请简述理由.

①向量与是共线向量,则A、B、C、D四点必在一直线上;

②单位向量都相等;

③任一向量与它的相反向量不相等;

④四边形ABCD是平行四边形的充要条件是=;

⑤模为0是一个向量方向不确定的充要条件;

⑥共线的向量,若起点不同,则终点一定不同.

[练习2]下列命题正确的是( )

A.a与b共线,b与c共线,则a与c也共线

B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点

C.向量a与b不共线,则a与b都是非零向量

D.有相同起点的两个非零向量不平行

Ⅲ知识应用阶段————共线向量,相等向量等概念的初步应用

在本阶段的教学中,我采用的是课本上一道典型的例题:在一个复杂图形中观察,辨认平行,相等的有向线段。选用本题的目的是让学生进行独立思考,自主探究,交流讨论等探索活动,加深对概念的理解和对难点的突破。

例如图所示,设O是正六边形ABCDEF的中心,分别写出图中与向量相等的向量。(同时思考:向量与相等么?向量与相等么?)

具体教学安排如下:

(1)分析解决问题

先引导学生分析解决问题。包括向量的概念,:向量相等的概念。抓住相等向量概念的实质:两个向量只有当它们的模相等,同时方向又相同时,才能称它们相等。进而进行正确的辨认,直至最终解决问题。

(2)归纳解题方法

主要引导学生归纳以下两个问题:①零向量的方向是任意的,它只与零向量相

等;②两个向量只要它们的模相等,方向相同就是相等向量。一个向量只要不改变它的大小和方向,是可以任意平行移动的,既向量是自由的。

Ⅳ学习,小结阶段———归纳知识方法,布置课后作业

本阶段通过学习小结进行课堂教学的反馈,组织和指导学生归纳知识,技能,方法的一般规律,为后续学习打好基础。

具体的教学安排如下:

(1)知识,方法小结在知识层面上我首先引导学生回顾本节课的主要内容,提醒学生要抓住向量的本质:大小与方向,对它们进行类比,加深对每个概念的理解。

在方法层面上我将带领学生回顾探索过程中用到的思维方法和数学方法如:

类比,数形结合,等价转化等进行强调。

(2)布置课后作业

阅读教材96至97页内容,整理课堂笔记,习题5。1第1,2,3题。

《关于高中数学说课稿锦集6篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式