高中数学说课稿

时间:2024-11-09 19:58:30
高中数学说课稿模板汇编八篇

高中数学说课稿模板汇编八篇

作为一位杰出的教职工,常常需要准备说课稿,写说课稿能有效帮助我们总结和提升讲课技巧。那么应当如何写说课稿呢?下面是小编为大家整理的高中数学说课稿8篇,欢迎大家借鉴与参考,希望对大家有所帮助。

高中数学说课稿 篇1

一、教材分析

1、教材地位和作用

二面角及其平面角的概念是立体几何最重要的概念之一。二面角的概念发展、完善了空间角的概念;而二面角的平面角不但定量描述了两相交平面的相对位置,同时它也是空间中线线、线面、面面垂直关系的一个汇集点。搞好本节课的学习,对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。教学大纲明确要求要让学生掌握二面角及其平面角的概念和运用。

2、教学目标

根据上面对教材的分析,并结合学生的认知水平和思维特点,确定本节课的教学目标:

认知目标:

(1)使学生正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。

(2)进一步培养学生把空间问题转化为平面问题的化归思想。

能力目标:以培养学生的创新能力和动手能力为重点。

(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。

(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。

教育目标:

(1)使学生认识到数学知识来自实践,并服务于实践,从而增强学生应用数学的意识。

(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。

3、本节课教学的重、难点是两个过程的教学:

(1)二面角的平面角概念的形成过程。

(2)寻找二面角的平面角的方法的发现过程。

其理由如下:

(1)现行教材省略了概念的形成过程和方法的发现过程,没有反映出科学认识产生的辩证过程,与学生的认知规律相悖,给学生的学习造成了很大的困难,非常不利于学生创新能力、独立思考能力以及动手能力的培养。

(2)现代认知学认为,揭示知识的形成过程,对学生学习新知识是十分必要的。同时通过展现知识的发生、发展过程,给学生思考、探索、发现和创新提供了最大的空间,可以使学生在整个教学过程中始终处于积极的思维状态,进而培养他们独立思考和大胆求索的精神,这样才能全面落实本节课的教学目标。

二、指导思想和教学方法

在设计本教学时,主要贯彻了以下两个思想:

1、树立以学生发展为本的思想。通过构建以学习者为中心、有利于学生主体精神、创新能力健康发展的宽松的教学环境,提供学生自主探索和动手操作的机会,鼓励他们创新思考,亲身参与概念和方法的形成过程。2、坚持协同创新原则。把教材创新、教法创新以及学法创新有机地统一起来,因为只有教师创新地教,学生创新地学,才能营建一个有利于创新能力培养的良好环境。

首先是教材创新。

(1)在二面角的平面角概念引入上,我变课本上的“直接给出定义”为“类比——猜想——操作——定义”,也就是变封闭的、逻辑演绎体系为开放的、探索性的发现过程。

(2)在引入定义之后,例题讲解之前,引导学生发现寻找二面角的平面角的方法,为例题做好铺垫。

(3)重新编排例题。

其次是教法创新。采用多种创新的教学方法,包括问题解决法、类比发现法、研究发现法等教学方法。

这组教学方法的特点是教师通过创设问题情境,引导学生逐步发现知识的形成过程,使教学活动真正建立在学生自主活动和探索的基础上,着力培养学生的创新能力。

这组教学方法使得学生在解决问题的过程中学数学,用数学,不仅强调动脑思考,而且强调动手操作,亲身体验,注重多感官参与、多种心理能力的投入,通过学生全面、多样的主体实践活动,促进他们独立思考能力、动手能力等多方面素质的整体发展。

教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用《几何画板》制作课件来辅助教学;此外,为加强直观教学,教师可预先做好一些模型。

最后是学法创新。意在指导学生会创新地学。

1、乐学:在整个学习过程中学生要保持强烈的好奇心和求知欲,不断强化自己的创新意识,全身心地投入到学习中去,成为学习的主人。

2、学会:在掌握基础知识的同时,学生要注意领会化归、类比联想等数学思想方法的运用,学会建立完善的认知结构。

3、会学:通过自已亲身参与,学生要领会复习类比和深入研究这两种知识创新的方法,从而既学到知识,又学会创新。

三、程序安排

(一)、二面角

1、揭示概念产生背景。

心理学研究表明,当学生明确数学概念的学习目的和意义时,就会对概念的学习产生浓厚的兴趣。创设问题情境,激发了学生的创新意识,营造了创新思维的氛围。

问题情境1、我们是如何定量研究两平行平面的相对位置的?

问题情境2、立几中常用距离和角来定量描述两个元素之间的相对位置,为什么不引入两平行平面所成的角?

问题情境3、我们应如何定量研究两个相交平面之间的相对位置呢?

通过这三个问题,打开了学生的原有认知结构,为知识的创新做好了准备;同时也让学生领会到,二面角这一概念的产生是因为研究两相交平面的相对位置的需要,从而明确新课题研究的必要性,触发学生积极思维活动的展开。

2、展现概念形成过程。

高中数学说课稿 篇2

说课目标

(1)知识目标:掌握抛物线的定义,掌握抛物线的四种标准方程形式,及其对应的焦点、准线。

(2)能力目标:通过对抛物线概念和标准方程的学习,培养学生分析和概括的能力,提高建立坐标系的能力,由圆锥曲线的统一定义,形成学生对事物运动变化、对立、统一的辨证唯物主义观点。

(3)德育目标:通过抛物线概念和标准方程的学习,培养学生勇于探索、严密细致的科学态度,通过提问、讨论、思考等教学活动,调动学生积极参与教学,培养良好的学习习惯。

教学重点:(1)抛物线的定义及焦点、准线;

(2)利用坐标法求出抛物线的四种标准方程;

(3)会根据抛物线的焦点坐标,准线方程求抛物线的标准方程。

教学难点:(1)抛物线的四种图形及标准方程的区分;

(2)抛物线定义及焦点、准线等知识的灵活运用。

说课方法:启发引导法(通过椭圆与双曲线第二定义引出抛物线)。

依据建构主义教学原理,通过类比、归纳把新知识化归到原有的认知结构中去(二次函数与抛物线方程的对比,移图与建立适当建立坐标系的方法的归 ……此处隐藏11098个字……/p>

温故知新,澄清概念----直线的方程

深入探究,获得新知--------点斜式

拓展知识,再获新知--------斜截式

小结引申,思维延续--------两点式

平面上的点可以用坐标表示,直线的倾斜程度可以用斜率表示,那么平面上的直线如何表示呢?这就是本节要学习的内容。

(一)温故知新,澄清概念----直线的方程

问题一:画出一次函数y=2x+1的图象;y=2x+1是一个方程吗?若是,那么方程的解与图象上的点的坐标有何关系?

[学生活动] 通过动手画图,思考并尝试用语言进行初步的表述。

[教师活动] 对于不同学生的表述进行分析、归纳,用规范的语言对方程和直线的方程进行描述。

[设计意图]从学生熟知的旧知识出发澄清直线的方程的概念,试图做到“用学生已有的数学知识去学数学”,从而突破难点。通过对这个问题的研究,一方面认识到以方程的解为坐标的点在直线上,另一方面认识到直线上的点的坐标满足方程;从而使同学意识到直线可以由直线上任意一点P(x,y)的坐标x和y之间的等量关系来表示。

问题二:若直线经过点A(-1, 3),斜率为-2,点P在直线l上。

(1) 若点P在直线l上从A点开始运动,横坐标增加1时,点P的坐标是 ;

(2)画出直线l,你能求出直线l的方程吗?

(3)若点P在直线l上运动,设P点的坐标为(x,y),你会有什么方法找到x,y满足的关系式?

[学生活动]学生独立思考5分钟,必要的话可进行分组讨论、合作交流。

[教师活动]巡视。肯定学生的各种方法及大胆尝试的行为;并引导学生观察发现,得到当点P在直线l上运动时(除点 A外),点P与定点A(-1, 3)所确定的直线的斜率恒等于-2,体会“动中有静”的思维策略。

[设计意图]复习斜率公式;待定系数法;初步体会坐标法。同时引导学生注意为什么要把分式化简?(若不化简,就少一点),感受数学简洁的美感和严谨性。还要指出这样的事实:当点P在直线l上运动时,P的坐标(x,y)满足方程2x+y-1=0.反过来,以方程2x+y-1=0的解为坐标的点在直线l上。把学生的思维引到用坐标法研究直线的方程上来,此时再把问题深入,进入第二环节。

(二)深入探究,获得新知----点斜式

问题三: ① 若直线l经过点P0(x0,y0),且斜率为k,求直线l的方程。

②直线的点斜式方程能否表示经过P0(x0,y0)的所有直线?

[学生活动] ①学生叙述,老师板书,强调斜率公式与点斜式的区别。 ②指导学生用笔转一转不难发现,当直线l的倾斜角α=90°时,斜率k不存在,当然不存在点斜式方程;讨论k=0的情况;观察并总结点斜式方程的特征。

[设计意图] 由特殊到一般的学习思路,突破难点,培养学生的归纳概括能力。通过对这个问题的探究使学生获得直线点斜式方程;由②知:当直线斜率k不存在时,不能用点斜式方程表示直线,培养思维的严谨性,这时直线l与y轴平行,它上面的每一点的横坐标都等于x0,直线l的方程是:x=x0;通过学生的观察讨论总结,明确点斜式方程的形式特点和适用范围,通过下面的例题和基础练习,突破重难点。

问题四:分别求经过点且满足下列条件的直线的方程

(1) 斜率;(2)倾斜角; (3)与轴平行 ;(4)与轴垂直。

[练习]P95.1、2。

[学生活动]学生独立完成并展示或叙述,老师点评。

[设计意图]充分用好教材的例题和习题,因为这些题都是专家精心编排的,充分体现必要性及合理性;做到及时反馈,便于反思本环节的教学,指导下个环节的安排;突破重点内容后,进入第三环节。

(三)拓展知识,再获新知----斜截式

问题五:(1)一条直线与y轴交于点(0,3),直线的斜率为2,求这条直线的方程。

(2)若直线l斜率为k,且与y轴的交点是 P(0,b),求直线l的方程。

[学生活动]学生独立完成后口述,教师板书。

[设计意图] 由一般到特殊再到一般,培养学生的推理能力,同时引出截距的概念及斜截式方程,强调截距不是距离。类比点斜式明确斜截式方程的形式特点和适用范围及几何意义,并讨论其与一次函数的关系。通过下面的基础练习,突破重点。

[练习]P95.3。

[设计意图]充分用好教材习题,及时反馈本环节的教学情况,指导下个环节的安排。

(四)小结引申,思维延续----两点式

课堂小结 1、有哪些收获?(点斜式方程:;斜截式方程:;求直线方程的方法:公式法、等斜率法、待定系数法。)

2、哪些地方还没有学好?

问题六:(1)直线l过(1,0)点,且与直线平行,求直线l的方程。

(2)直线l过点(2,-1)和点(3,-3),求直线l的方程。

[学生活动]学生独立思考并尝试自主完成,可以相互讨论,探讨解题思路。

[教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,有时间的话,可以让学生口述解题思路,也可以投影学生的证明过程,纠正出现的错误,规范书写的格式;没时间就布置分层作业。

[设计意图](1)小题与上一节的平行综合,学生应该有思路求出方程;(2)小题解决方法较多,预设有利用公式法、等斜率法、待定系数法,让好一点的学生有一些发散思维的机会,以及课后学习的空间,使探究气氛有一点高潮。另外也为下节课研究直线的两点式方程作了重要的准备。

分层作业 必做题:P100.A组:1.(1)(2)(3)、5.

选做题:P100.A组:1.(4)(5)(6).

[设计意图]通过分层作业,做到因材施教,使不同的学生在数学上得到不同的发展,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展。

四、教学特点分析

(一)实例引导。在字母运算、公式推导之前,总是用实例作为铺垫,使学生有学习知识的可能和兴趣,关注学困生的成长与发展。

(二)启发式教学。教学中总是以提问的方式叙述所学内容,如:1.直角坐标系内的所有直线都有点斜式方程吗?2.截距是距离吗?它可以是负数吗?3.你会求直线在轴上的截距吗?4.观察方程 ,它的形式具有什么特点?它与我们学过的一次函数有什么关系?等等。启发学生的思维,作好与学生的对话与交流活动。

(三)注重自主探究。设计问题链,环环相扣,使学生的探究活动贯穿始终。教师总是站在学生思维的最近发展区上,布设了由浅入深的学习环境突破重点、难点,引导学生逐步发现知识的形成过程。设计了两次思维发散点,分别是问题二和问题六的第(2)问,要求学生分组讨论,合作交流,为学生创造充分的探究空间,学生在交流成果的过程中,高效的完成教学任务。

《高中数学说课稿模板汇编八篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式